
S T A B I L I T Y  OF  T R A N S P O R T  P R O C E S S E S  IN C O N T I N U O U S  

M E D I A  W I T H  H E A T  OR M A T E R I A L  S O U R C E S  AND S I N K S  
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A sufficient stability cr i ter ion ts obtained for the heat-conduction process  in a continuous medium 
with variable coefficient of heat conduction and heat source .  

Although this investigation is equally valid for both heat propagation because of heat conduction and for 
mater ia l  t r anspor t  because of diffusion, for definiteness we shall never theless  speak everywhere here about 
heat propagation. 

The stability of t ranspor t  p rocesses  in continuous media with heat sources  has been investigated in a 
number of papers [1-5]. A variational t rea tment  of this question, different from [1-5], is elucidated here .  

The s ta t ionary energy equation has the form 

div (uvT) + Q = O, 

where T is the tempera ture ,  ~c = )r is the heat-conduction coefficient, Q =Q(T) is the volume intensity of 
evolution (heat absorption).  

The functional Jwhose  Euler  equation is (1)is 

T 

Ta 

(I) 
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where T O is some reference  point of T and integration is over the volume V. In fact, the f i rs t  variat ion of 
J(SJ) af ter  the utilization of Green 's  theorem has the form 

~J = S • (vTdS) - -  ~ • idly (~vT) + Q] 8TdV, (3) 

where the integral over  the s u r f a c e s  is zero forf ixed values of Tand  S, and the condition 5J =0 resul ts  in(l) 
for a rb i t r a ry  5T within the domain. 

The nonstationary equation corresponding to (1) is 

OT = div(• + Q, pc ~ -  (4) 

where p is the density and c is the specific heat. 

Considering T in (2) to satisfy (4) and, therefore,  J to dependalready on t, we find the rate of change of 
J .  Using (4), we obtain analogously to (3) 

0-7- = ~-T ~ T  ) ~ (5) 

For  5T = 0 the quantity 8J /a t  is negative on S because of p e n >  O. The stat ionary (ex t remal )va lueJ  =J0 is 
achieved upon compliance with the condition (1); i . e . ,  6J0 =0. However,  for the value of J0 to be stable it is 
n e c e s s a r y  that this extremum of J be a minimum for aJ/at< o; i . e . ,  62J0 > 0. 

It is easy  to see that 

5=J~ = -2- - ~  -}--2 O ~  (vT)Z 4 OT J (6T)2 dV. (6) 

Therefore ,  for 5T =0 on S, compliance with the condition 
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0' In • OQ/• 
OT----- ~ -  (vT) ' + - ~  < 0 (7) 

is sufficient for 62J0 > 0. In par t icuIar ,  for  ~ = c o n s t  condition(7) is sa t i s f iedfor  ~Q/aT < 0, which holds inthe 
ease of Joulean dissipation, e . g . ,  when Q =j2/a (j is the e lec t r ica l  cur ren t  dens ity, assumedcons tant ,  and 
is the e lec t r ica l  conductivity which grows with T). 

The r eve r s e  inequality to (7) is a neces sa ry  (butnot sufficient)condition for instability. In the case of 
Joulean dissipation when the dependence of a on T is quite strong, neces sa ry  for compliance with the last  c r i -  
ter ion is that(~2ln~/OT2)p > 0 and, moreover ,  

I or, ] , '  

where p is the p r e s su re .  The condition (821n~/OT2)p> 0 is satisfied on sections abutting the minimums of the 
equilibrium curve of ~tas a func t ionof  T for the pa ramete r  p. These sections exis tdur ing the passage of equi- 
l ibr ium chemical  react ions  in a medium. 

In the case ofnonequil ibrium ehemiea l reac t ions ,  when Q can be t rea ted  as a heat source (or sink), the 
cr i ter ion (7) cannot be satisfied for ~=cons t .  This holds fo rexo the rmal  react ions when Q ~exp( - -E /T) ,  where 
E > 0 is the activation energy.  

Here the stability investigation should be conducted by solving a variat ional  equation which is obtained 
upon varying (1). This equation, called the Jacobi  equation, is s imultaneously the Euler  equation of functional 
(6) (see [6], for instance). 

For  a pe r tu rbedreg ime  deviating slightly f rom (1), Eq. (4) has the l inear form 

OT' = A(• OQ T'. 
pc 0--7- o r  (s) 

Considering the perturbat ion T'--*T'(x)exp(kr), where r is the radius inthe y - -  z plane and k is the appropriate  
wave vector ,  we obtain from (8) 

OT' O'(~T')  (k , •  OQ ) T,. 
pc Ot -- Ox' - ~  (9) 

Here al l  the coefficients a re  functions of the unperturbed value of T and, therefore ,  a re  functions of x. The 
functional in T '  whose Euler  equation is the r ight-hand side of (9) has the form 

Its secondvar ia t ion  is 

and the sufficient stabili ty condition 

021n• {OT~ 2 OQ/• <tea 
or" ~,-g2x ] -~ o--r (to) 

is weaker than the analogous condition (7). 

There fore ,  taking account of periodic perturbations in a plane perpendicular  to the direction of the unper-  
turbed distribution of T resul ts  in g rea t e r  s tabi l izat ionof  this distribution. In other words,  longitudinal pe r tu r -  
bations (in the distribution) are  mos t  dangerous:  If the system is stable with respec t  to them, then it willbe all 
the more  stable in the presence  of t r ansver se  per turbat ions .  Onthe other hand, if the system is unstable with 
respec t  t o t  he longitudinalperturbations,  then switching in sufficiently shortwave t ransverse  perturbations will 
stabilize the sys tem.  

As mentioned above , the Jacob[ equat ionmust  be solved inthe case of noncompliance with the sufficient 
stabili ty conditions (7) or  (10). If ~ = const  and Q ~ exp(aT), then analytic solutions of both the Euler  and Jacob[ 
equations and of the stability problem in its tradit ional formulation can be obtained in the one-dtmens [onal case .  
Th following fact [7] is the foundation for this.  
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The express ion 

is a solution of the equation 

y=e~[~(C+et~--C_e-Zx)'] ' 

9,, = [~2 __ 2 (cp'/~)'] y 
under the condition 

(~,/~)" + 2 (~ ' /~)  (~ ' /~ ) '  - -  0. 

Here the pr imes  denote differentiation with respec t  to x, X=eonst  tsa  pa ramete r ,  C+ are  constants of integra- 
tion, and ~o=sinx, cos x. On makingthe replacements  x, X--ix,  iX, we have ~0 =sinhx, coshx. 

The Jacobiequat ion inthe combustion case (a > 0) has the form 

d2T ~- 2 x 0, 
d~lZ chZrl (11) 

where ,7 is a dimensionless coordinate 01__< ~ __<~+) and r = c~T' is a dimensionless temperature  perturbation.  
The solution of (11)satisfying the conditions r0?-) =0 and dr/dv(~_) =1 is the following [6]: 

r = - -  th rt_ { t ~- [(q_ - -  cth n )  --  rl] th rl}. (12) 

For  a nonmonotonic change in T across  a layer  when r} =0 there corresponds  max T, r/_-< 0-< r/+, and 

- - q _ + r l  =c~_chTl_=c%chrl_>0,  a_/a+=ch~l+/chq =f l<l .  
where oe. and 13 are  certain eonstants.  We hence obtain 

Iq_l = c*_ ch I'Ll - -  Arch (13 ch IRK[). ( 1 3 )  

Depending on the values of o~_ and/3, Eq. (13) in I~-t has either two or  no solutions. The derivative of the 
r ight-hand side of (13) with respec t  to IT/-I is 

~ th I~]_1 [111_ I - -  (cih q. - -  ~l+)l, 

while the derivative of the left-hand side of (13) with respec t  to 17/_1 is one. Since r corresponds to a l e s se r  
and $>_ 1 to a g rea te r  solution of b?_ I in the presence of solutions, it follows f rom (12) that r(~+)_>0 holds for 
the f i rs t  solution and r(r /+)-0 for the second. It can be seen that the inequality r0?) > 0 is satisfied for rl_ < 7/< 
~?+ for the f i rs t  solution while the sign of r changes in the same range of variat ion of r / for  the second solution. 
In conformity with the theory of sufficient conditions for the weak minimum of a functional [6], this means that 
62J0 >0 for the f i rs t  solution but the sign of 52J0 is uncertain for the second. The same resul t  is obtained for a 
monotonic change in T ac ross  the layer  also.  

Therefore ,  even in the combustion case when the sufficient condition for stability (7) is not satisfied, the 
mode being real ized physically (the f i rs t  solution) eorresponds to absolute stability of the system relat ive to 
the temperature  perturbations under considerat ion.  

The evolution cr i te r ion  used here OJ/at< 0 has no relation to the known principle of the minimum of 
entropy occurrence  (see [8, 9], for example), and is a resul t  of the parabolici ty of the nonstationary equation (4) 
in the long run. The validity of this cr i ter ion is not constrained by the condition of constancy of the heat-conduc-  
tion coefficient ~. However, for ~=cons t  the cr i ter ion is true even taking into account a convective te rm of 
the form pcvOT/0x,  which is not possible for the principle of theminimum of the rate of entropy occurrence  
[8, 91 . 
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